新聞中心Info
合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 熱毛細效應引起的表面張力梯度導致傾斜壁面上液膜干斑的出現(xiàn)(三)
> 水面上單分子層膜通過磷脂光控開關實現(xiàn)可逆光學控制——結論、致謝!
> 中心對稱分子稀土夾心雙酞菁銩LB膜制備及二次諧波產生機制
> 不同濃度6∶2氟調磺酸的表面張力測定儀器及結果(一)
> 某種物體表面張力系數(shù)為零會發(fā)生什么現(xiàn)象?
> 燒結礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(二)
> 脂肪醇聚醚磺酸鹽的界面性能、耐溫耐鹽性能對比
> 克拉瑪依油田:陰陽離子表面活性劑復配體系可實現(xiàn)超低界面張力
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對比(一)
> 干濕循環(huán)試驗:不同表面張力下土壤裂隙的發(fā)展演化機理(一)
推薦新聞Info
-
> 基于水煤漿流變性和動態(tài)表面張力觀察水煤漿的微觀破裂特性(三)
> 基于水煤漿流變性和動態(tài)表面張力觀察水煤漿的微觀破裂特性(二)
> 基于水煤漿流變性和動態(tài)表面張力觀察水煤漿的微觀破裂特性(一)
> 免罩光水性素色面漆配方、制備方法及步驟
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關系研究(三)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關系研究(二)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關系研究(一)
> 電場處理水浮力、及與普通水的表面張力系數(shù)測定
> 軟物質褶皺形成機制新發(fā)現(xiàn):液體浸潤、表面張力與接觸線釘扎效應
> LB膜技術在界面相互作用研究中的應用
基于水煤漿流變性和動態(tài)表面張力觀察水煤漿的微觀破裂特性(三)
來源: 華東理工大學學報(自然科學版) 瀏覽 20 次 發(fā)布時間:2025-07-14
2.3水煤漿的微觀破裂特性
與純液體不同,由于漿體液固混合物流變性和屈服應力等參數(shù)的影響,漿體破裂過程更加復雜。在漿體破裂末期,當水煤漿液橋的喉部直徑(Dm,如圖6所示)尺寸很小時,固體顆粒將會發(fā)揮顯著影響。典型水煤漿破裂實驗照片如圖7所示,由于微觀破裂條件下液固出現(xiàn)部分分離,煤粉顆粒在液橋喉部附近凸出氣液界面,使得原本光滑的水煤漿表面逐漸粗糙,其變化特性與水煤漿黏度、表面張力和屈服應力等參數(shù)密切相關。
圖6水煤漿喉部直徑示意圖
圖7典型水煤漿破裂實驗照片(w=60%,華電煤)
利用Imagej圖像處理軟件對液橋喉部直徑的變化情況進行了測量,重復3次后的實驗測量結果如圖8所示。
圖8水煤漿喉部直徑隨時間變化關系(不同顏色表示不同實驗結果)
由圖8可知,喉部直徑隨破裂過程特征時間(tp?t)呈冪函數(shù)形式變化,其中tp為水煤漿喉部發(fā)生破裂的時間,tr為實際時間。結合圖7和圖8分析可知,在水煤漿破裂初始階段,漿體界面仍比較光滑。隨著破裂的發(fā)展,當喉部直徑收縮至2 mm左右(10倍顆粒直徑)時,可以認為是進入了微觀破裂區(qū),顆粒直徑在這個尺度區(qū)間對流體的影響較大,會阻礙流體的流動和變形,此時漿體界面會粗糙不平,浮現(xiàn)出固體顆粒。
在水煤漿破裂過程中,隨著液橋喉部直徑的減小,其變形速率加快。喉部的剪切速率(r)與局部水煤漿速度梯度(du/dy)有關,其關系可以近似表示為
(3)
借鑒文獻中對黏性流體喉部破裂的研究結果,有如下關系式:
(4)
公式(4)是文獻基于Navier-Stokes方程推導出的黏性流體破裂的理論模型,為了增強其適用性,本文通過水煤漿流變性和動態(tài)表面張力修正,使其適用于水煤漿微觀破裂。通過分析水煤漿破裂實驗結果,采用式(3)計算漿體喉部剪切速率,結合水煤漿流變性(式(1))和動態(tài)表面張力(式(2)),最終獲得擬合關系式如下:
(5)
圖9所示為不同條件下水煤漿喉部直徑實驗值(Dm,EXP)和擬合值(Dm,pre)對比。從式(5)和圖9可以看出:影響水煤漿喉部破裂特性的主要參數(shù)包括動態(tài)表面張力、黏度、屈服應力等;在不同煤種和水煤漿質量分數(shù)條件下,水煤漿破裂末期的喉部直徑變化趨勢保持一致,表明水煤漿微觀破裂過程具有一定的相似特性。
圖9不同條件下水煤漿喉部直徑實驗值與擬合值對比
3結論
以神華煤和華電煤為煤種制備了質量分數(shù)為58%~62%的水煤漿,使用旋轉流變儀、靜/動態(tài)表面張力儀、高速攝像機和圖像處理軟件等研究了水煤漿理化參數(shù)對其微觀破裂過程的影響,得到的主要結論如下:
(1)所制備的水煤漿均為剪切變稀的非牛頓流體。在剪切速率小于1 s?1區(qū)間,水煤漿濃度對漿體黏度有顯著影響,濃度越大漿體黏度越大,且剪切變稀特性明顯;當剪切速率大于1 s?1時,水煤漿濃度對漿體黏度影響相對減弱,且隨著剪切速率的增加,漿體黏度變化較小。采用Herschel-Bulkley模型建立了水煤漿流變關系式為:
(2)不同煤種和濃度條件下水煤漿的動態(tài)表面張力變化情況比較一致,水煤漿的動態(tài)表面張力隨著特征氣泡時間的增加先減小后增加,在氣泡特征時間200 ms附近出現(xiàn)最小值;水煤漿的動態(tài)表面張力與靜態(tài)表面張力存在顯著差異,在氣泡特征時間較小或較大時,動態(tài)表面張力均大于靜態(tài)表面張力。
(3)在水煤漿微觀破裂過程中,當破裂末期喉部直徑很小時,會出現(xiàn)煤粉顆粒和液體的部分分離,顆粒在液橋喉部附近凸出氣液界面,使得原本光滑的水煤漿表面逐漸粗糙。水煤漿喉部直徑變化主要受到漿體黏度、表面張力和屈服應力等參數(shù)影響,喉部直徑隨破裂過程特征時間變化表現(xiàn)為冪函數(shù)形式,其表達式為
符號說明:
D——液滴直徑,μm
Dm——喉部直徑,mm
D32——索特平均直徑,μm
D43——德布魯克平均直徑,μm
——速度梯度,s?1
K——稠度系數(shù),Pa·sn
N——液滴數(shù)量
n——流變指數(shù)
t——氣泡時間,ms
tp——水煤漿喉部發(fā)生破裂時刻,ms
——水煤漿黏度,Pa·s
——屈服應力,Pa
——剪切速率,s?1
σ——液體表面張力,mN/m