合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> ?界面流變儀可以測量液體表面張力嗎?界面流變儀與界面張力儀區(qū)別解析
> 表面張力在涂料中的應(yīng)用及選擇
> 耐高溫采油菌株ZY-1:碳源對發(fā)酵液表面張力的影響
> 桐油基衍生物鈉鹽的表面張力、CMC值測定、乳液穩(wěn)定性、固化膜性能測試(二)
> 低界面張力納米流體提高低滲透油藏壓裂滲吸速率和采收率(二)
> 水性墨水的研制與墨水的表面張力值
> 堿、表面活性劑濃度變化對三元復(fù)合體系界面張力的影響
> 鋰電池隔膜粘接劑組合物稀釋液表面張力測試及影響
> 熱力學(xué)模型計(jì)算MgO-B2O3-SiO2-CaOAl2O3富硼渣表面張力(一)
> 利用溶液的張力,設(shè)計(jì)一種用于精密分區(qū)腐蝕又不接觸晶圓表面的隔離網(wǎng)筒
推薦新聞Info
-
> 一種可降解、抑制泡沫再生的消泡劑制備方法和應(yīng)用
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(二)
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(一)
> 鈦基量子點(diǎn)納米復(fù)合高性能解水鎖劑制備及表面張力測定
> 如何有效避免釹鐵硼磁體擴(kuò)散源成分偏析
> 東辛原油酸性活性組分油水界面張力、動(dòng)態(tài)界面擴(kuò)張流變性質(zhì)研究(二)
> 東辛原油酸性活性組分油水界面張力、動(dòng)態(tài)界面擴(kuò)張流變性質(zhì)研究(一)
> 3種典型清水劑對不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(二)
> 3種典型清水劑對不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(一)
> 5μL樣品測表面張力?超微量天平如何破解納米材料研發(fā)困局
非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(一)
來源:精細(xì)石油化工 瀏覽 5 次 發(fā)布時(shí)間:2025-06-20
在石油開采領(lǐng)域,堿-表面活性劑-聚合物復(fù)合體系常用于提高石油采收率。其中堿的加入可以與石油中的有機(jī)酸形成天然表面活性劑,與外來表面活性劑具有較好的協(xié)同作用,但堿的存在也導(dǎo)致了注采系統(tǒng)結(jié)垢、儲(chǔ)層傷害以及產(chǎn)出液處理困難等諸多問題,因此,無堿或弱堿低傷害的表面活性劑驅(qū)油技術(shù)得到了長足發(fā)展[4~5]。非離子及陰離子表面活性劑是石油開采中常用的表面活性劑。在醇醚表面活性劑分子的羥基上引入磺酸基團(tuán)成為改性的非-陰離子型醇醚磺酸鹽表面活性劑,由于分子結(jié)構(gòu)中含有醚基親水基團(tuán)(—C2H4O—)和磺酸基團(tuán)(—SO3Na—),因而表現(xiàn)出非離子表面活性劑的抗鹽性和磺酸鹽陰離子表面活性劑的抗溫和耐鹽性能,從而擴(kuò)展了非離子表面活性劑的應(yīng)用范圍。
近年來,筆者課題組合成了系列非-陰離子混合型表面活性劑并對其性能進(jìn)行了研究[6-9],脂肪醇醚(EO6)磺酸鹽與非離子表面活性劑的復(fù)配體系在鹽水介質(zhì)中與臨盤原油的界面張力達(dá)到10-3mN/m數(shù)量級(jí),體現(xiàn)出較高的驅(qū)油效率。根據(jù)表面活性劑與烷烴界面張力模型理論,在研究表面活性劑結(jié)構(gòu)對最小界面張力的烷烴碳數(shù)的影響時(shí)發(fā)現(xiàn),產(chǎn)生最小界面張力所需的表面活性劑分子中烷烴碳數(shù)隨著原油等效烷烴碳數(shù)的增加而增加[10]。也就是說原油等效烷烴碳數(shù)越高,就要適當(dāng)提高表面活性劑的疏水性達(dá)到提高界面活性的目的。因此,為提高驅(qū)油效率,通常要根據(jù)原油屬性及等效烷烴碳數(shù)來選取適當(dāng)碳鏈長度的表面活性劑。本文針對高凝、高蠟含量魏崗原油的特點(diǎn),并考慮到過長碳鏈數(shù)表面活性劑的溶解性差的問題,以低醚化十六醇的磺化改性物與酰胺非離子表面活性劑進(jìn)行復(fù)配,通過研究表面活性劑之間相互作用,探討二者之間降低表/界面張力上的協(xié)同作用,得到了適用于聚合物/表面活性劑二元復(fù)合驅(qū)的低界面張力體系。
1實(shí)驗(yàn)部分
1.1實(shí)驗(yàn)材料
聚丙烯酰胺(HPAM),水解度10%,相對分子質(zhì)量1.8×107,河南油田。十六醇醚(EO3)磺酸鹽(AEO3S),參照文獻(xiàn)[8]合成;月桂酸烷醇酰胺(LDA),參照文獻(xiàn)[11-12]合成及純化。
Delta-8全自動(dòng)高通量表面張力儀,芬蘭Kibron公司;TX500C界面張力儀,美國科諾工業(yè)有限公司。
1.2實(shí)驗(yàn)方法
1.2.1表面張力及臨界膠束濃度
通常采用吊片法測定表面活性劑溶液的表面張力。將提純后的表面活性劑用模擬地層礦化水配成質(zhì)量濃度為0.001~0.3%的溶液,根據(jù)表面張力與質(zhì)量濃度關(guān)系曲線的轉(zhuǎn)折點(diǎn)確定臨界膠束濃度(CMC),得到CMC時(shí)的表面張力(γCMC)。根據(jù)表面活性劑相對分子質(zhì)量可以計(jì)算出以摩爾濃度(mol/L)為單位表示的CMC。
復(fù)合表面活性劑溶液的CMC測定:將單一表面活性劑分別配成高濃度的表面活性劑溶液,按照不同質(zhì)量配比混合,再用礦化水稀釋到系列濃度的表面活性劑溶液,測定溶液的表面張力,通過表面活性劑溶液濃度與表面張力的關(guān)系曲線得到混合表面活性劑溶液的CMC。
1.2.2界面張力測定
傳統(tǒng)的滴重法和懸滴法只能測量較高界面張力的值。本文采用Delta-8全自動(dòng)高通量表面張力儀,具有方法簡單、迅速、可靠的特點(diǎn)。用地層水配置一定濃度的表面活性劑溶液,以魏崗原油為內(nèi)相在70℃測定表面活性劑溶液與原油間的平衡界面張力。
2結(jié)果與討論
2.1混合表面活性劑的CMC與表面張力
在25℃測試了AEO3S和烷醇酰胺LDA表面活性劑及其在不同質(zhì)量配比下溶液的表面張力,實(shí)驗(yàn)結(jié)果見圖1。根據(jù)相對分子質(zhì)量計(jì)算出表面活性劑AEO3S的摩爾分?jǐn)?shù)(αAEO3S)。由圖1中濃度與表面張力的關(guān)系得到溶液的CMC及對應(yīng)濃度下的表面張力,實(shí)驗(yàn)結(jié)果見表1。
圖1 AEO3S/LDA不同復(fù)配比的表面張力
表1不同配比下表面活性劑溶液的CMC及表面張力
從圖1可知,隨著表面活性劑濃度的增加,表面張力逐漸降低,當(dāng)濃度增加到一定程度后表面張力變化趨于穩(wěn)定并出現(xiàn)一平臺(tái),曲線轉(zhuǎn)折點(diǎn)就是表面活性劑的臨界膠束濃度(CMC)。由表1可知,AEO3S和LDA的CMC分別為0.13和0.26 mmol/L,對應(yīng)濃度下的表面張力分別為37.3和30.25 mN/m。當(dāng)兩種表面活性劑混合后隨著AEO3S的含量提高,溶液的CMC比具有低CMC值的表面活性劑AEO3S還要低。在m(AEOS)∶m(LDA)=2∶3~4∶1時(shí),混合溶液的CMC在0.100~0.115 mmol/L,也就是說AEO3S在溶液中的質(zhì)量分?jǐn)?shù)為40%~80%時(shí)混合溶液的CMC均較單一表面活性劑溶液的CMC低,這一結(jié)果表明AEO3S和LDA在比較大的混合比范圍內(nèi)均易于形成混合膠束,在較低表面活性劑的濃度時(shí)就可以達(dá)到較高的表面活性。另外,含有33%~66%AEO3S的混合溶液的表面張力較低,為29.4~30.2 mN/m,這是因?yàn)榉请x子表面活性劑分子與磺酸鹽表面活性劑的穿插排列使得表面活性劑分子在空氣/水界面上排列得更加緊密,導(dǎo)致表面張力下降。