合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 粘度、稠度和表面張力的共同點(diǎn)及在日常生活中的應(yīng)用
> 產(chǎn)低溫β-甘露聚糖酶的菌株O5提升低溫油藏壓裂液的破膠性能——實(shí)驗(yàn)部分
> SRA減縮劑濃度對(duì)溶液表面張力、砂漿凝結(jié)時(shí)間、水泥水化的影響(一)
> 電極與溶液界面的吸附現(xiàn)象
> 基于脫模劑應(yīng)用實(shí)現(xiàn)聚苯乙烯類(lèi)生物材料改性
> 液滴爆炸現(xiàn)象:酒精蒸發(fā)引起的馬蘭戈尼流動(dòng)現(xiàn)象影響參數(shù)(一)
> 陶瓷墨水中5種色料生產(chǎn)制造工藝流程
> 高速運(yùn)動(dòng)的微小水滴撞擊深水液池產(chǎn)生的空腔運(yùn)動(dòng)及形成機(jī)理(二)
> 麥芽糖醇脂肪酸酯水溶液合成、反應(yīng)條件及表面張力測(cè)定——結(jié)果與分析、結(jié)論
> 槐糖脂的屬性:脂肪酸底物和混合比例的影響——材料和方法
推薦新聞Info
-
> 一種可降解、抑制泡沫再生的消泡劑制備方法和應(yīng)用
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(二)
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(一)
> 鈦基量子點(diǎn)納米復(fù)合高性能解水鎖劑制備及表面張力測(cè)定
> 如何有效避免釹鐵硼磁體擴(kuò)散源成分偏析
> 東辛原油酸性活性組分油水界面張力、動(dòng)態(tài)界面擴(kuò)張流變性質(zhì)研究(二)
> 東辛原油酸性活性組分油水界面張力、動(dòng)態(tài)界面擴(kuò)張流變性質(zhì)研究(一)
> 3種典型清水劑對(duì)不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(二)
> 3種典型清水劑對(duì)不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(一)
> 5μL樣品測(cè)表面張力?超微量天平如何破解納米材料研發(fā)困局
3種常見(jiàn)醇類(lèi)燃料甲醇、乙醇、正丁醇噴霧特性與表面張力的關(guān)系(二)
來(lái)源:《內(nèi)燃機(jī)工程》 瀏覽 140 次 發(fā)布時(shí)間:2025-05-23
1試驗(yàn)裝置
圖1為試驗(yàn)裝置示意圖,主要由計(jì)算機(jī)控制系統(tǒng)、噴油系統(tǒng)控制器、高壓燃料供給系統(tǒng)、定容彈系統(tǒng)、高速攝像裝置等組成。
圖1試驗(yàn)裝置示意圖
燃油噴射壓力會(huì)直接對(duì)燃油的射流初次和二次破碎產(chǎn)生影響,在該試驗(yàn)中,噴射壓力的控制主要依靠高壓燃料供給系統(tǒng),其中包括氣驅(qū)泵、高低壓氣泵、穩(wěn)壓罐、油箱、油濾、低壓油泵、控制電路等部件。環(huán)境壓力簡(jiǎn)稱(chēng)背壓,代表了高壓定容彈內(nèi)的空氣密度,對(duì)醇束的發(fā)展有著直接影響。通過(guò)氣體調(diào)壓閥控制供入定容彈的空氣流量,利用定容彈控制系統(tǒng)的進(jìn)排氣開(kāi)關(guān)遠(yuǎn)程調(diào)節(jié)環(huán)境壓力的大小,同時(shí)觀測(cè)壓力表,誤差控制在要求值±0.01 MPa之內(nèi)。環(huán)境溫度影響著燃料的密度、黏度和表面張力,對(duì)噴霧特性有顯著影響。環(huán)境溫度的調(diào)節(jié)通過(guò)容彈控制系統(tǒng)中的加熱模塊,遠(yuǎn)程操控布置在容彈內(nèi)的8條加熱棒實(shí)現(xiàn),容彈內(nèi)頂部、四周、底部設(shè)有溫度傳感器,對(duì)腔內(nèi)溫度進(jìn)行實(shí)時(shí)監(jiān)測(cè),并將誤差控制在要求值±1℃之內(nèi)。
2燃料性質(zhì)和試驗(yàn)方案
試驗(yàn)燃料選取甲醇、乙醇和正丁醇,3種醇類(lèi)燃料及汽油的基本燃料特性如表1所示。試驗(yàn)工況設(shè)計(jì)方案如表2所示。為了保證數(shù)據(jù)準(zhǔn)確性和可靠性,避免試驗(yàn)中的隨機(jī)誤差,每種工況重復(fù)測(cè)試10次。
表1燃料特性
表2試驗(yàn)工況設(shè)計(jì)
3試驗(yàn)結(jié)果與分析
3.1噴射壓力對(duì)醇類(lèi)燃料的噴霧特性的影響
分析時(shí)采用控制變量法,在環(huán)境溫度20℃、環(huán)境壓力0.1 MPa條件下,以噴射壓力為變量,分別選取10、20、30 MPa作為參考,研究了不同噴射壓力下3種醇類(lèi)燃料的噴霧發(fā)展。
圖2為3種醇類(lèi)燃料在背壓0.1 MPa、環(huán)境溫度20℃時(shí),不同噴射壓力下噴霧開(kāi)始后時(shí)刻0.2至1.4 ms內(nèi)的噴霧軸向貫穿距和噴霧面積的變化,其中pinj定義為噴射壓力。
圖2不同噴射壓力下的貫穿距離和噴霧面積
由圖2可知,所有軸向貫穿距數(shù)值曲線都隨著噴霧開(kāi)始后時(shí)刻的增加而升高,然后到達(dá)一定值后趨于平穩(wěn),所對(duì)應(yīng)的數(shù)值為該試驗(yàn)設(shè)備的拍攝極限,現(xiàn)實(shí)中的噴霧仍會(huì)繼續(xù)發(fā)展。相較于甲醇和乙醇,正丁醇的密度、黏度和表面張力都較大,在圖像中可以明顯看出正丁醇的噴霧發(fā)展較慢,在相同噴射壓力條件、噴油后同一時(shí)刻,正丁醇的軸向貫穿距較小。
由圖2還可發(fā)現(xiàn),隨著噴射壓力的增加,3種醇類(lèi)燃料的噴霧面積都明顯增大,曲線的攀升速度也增大。這是因?yàn)楫?dāng)噴射壓力升高時(shí),噴嘴內(nèi)部的湍流現(xiàn)象會(huì)加劇,同時(shí)燃油噴射的初速度也會(huì)提升,使醇束與容彈內(nèi)氣體間的相互作用更為強(qiáng)烈,進(jìn)而使液滴的尺寸減小,由于燃油小液滴動(dòng)量減小,更易受到空氣介質(zhì)的干擾,使噴霧面積得以擴(kuò)大。在醇類(lèi)燃料霧化的過(guò)程中,噴射壓力是重要的影響因素,提高噴射壓力可以改善醇類(lèi)燃料的霧化質(zhì)量。
在常溫條件下,噴霧軸向貫穿距和噴霧面積曲線的變化規(guī)律,除了受背壓變化的影響,還與燃料本身的特性有關(guān)。3種醇類(lèi)燃料中,甲醇和乙醇的密度和表面張力較為相似,但試驗(yàn)發(fā)現(xiàn)甲醇與乙醇的噴霧軸向貫穿距的發(fā)展仍存在些許差異。各燃料的動(dòng)力黏度由小到大依次為:甲醇(0.55 mPa·s)、乙醇(1.19 mPa·s)、正丁醇(2.81 mPa·s)。相同噴射壓力和環(huán)境壓力條件下,軸向貫穿距與動(dòng)力黏度大小呈現(xiàn)出反向增長(zhǎng)的趨勢(shì)??傮w而言,不同燃料間的差異往往與燃料特性密切相關(guān),在相同噴油條件和環(huán)境條件下,噴霧軸向貫穿距和噴霧面積受動(dòng)力黏度的影響,正丁醇具有較高的動(dòng)力黏度,在噴油時(shí)產(chǎn)生了較大的黏性損失,從而抑制液滴的發(fā)展。
3.2 環(huán)境壓力對(duì)醇類(lèi)燃料的噴霧特性的影響
圖3為不同環(huán)境壓力對(duì)噴霧錐角的影響,各醇類(lèi)燃料的噴霧錐角都隨著背壓的增大而增大。背壓增大使各燃料在噴孔內(nèi)的流動(dòng)速度減小,流動(dòng)阻力增大,噴出后受高壓的環(huán)境空氣影響,噴霧發(fā)生“卷吸”,醇束末端向外向上發(fā)生卷曲,使各燃料的噴霧錐角受到一定影響。當(dāng)環(huán)境壓力升高至0.5 MPa、0.7 MPa時(shí),正丁醇燃料的噴霧錐角相較于甲醇、乙醇較小,這是由于正丁醇具有較大的動(dòng)力黏度和密度,噴射時(shí)液滴不易破碎,使正丁醇噴霧沿徑向發(fā)展的速度較慢。在文獻(xiàn)的研究中,將0.08~0.10 MPa區(qū)域定義為低背壓區(qū),0.30~0.90 MPa區(qū)域定義為高背壓區(qū)。低背壓區(qū)中,噴霧發(fā)生坍塌,液滴顆粒失去動(dòng)能,噴霧收縮,錐角減??;高背壓區(qū)(0.3 MPa、0.5 MPa、0.7 MPa)噴霧坍塌減弱,液滴顆粒不斷向外擴(kuò)散,使錐角增大,這再次解釋了圖3中錐角隨環(huán)境壓力的升高而增大的現(xiàn)象。
圖3環(huán)境壓力對(duì)醇類(lèi)燃料噴霧錐角的影響