合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 克拉瑪依油田:陰陽離子表面活性劑復(fù)配體系可實現(xiàn)超低界面張力
> 基于界面張力和表面張力測試評估商用UV油墨對不同承印紙張的表面浸潤性差異(二)
> 表面張力的產(chǎn)生原理
> 表面張力估算法測定29種常見低芳淺色礦物油的溶解度參數(shù)——實驗部分
> 可視化實驗方法研究電場作用下液滴撞擊表面的動態(tài)行為(一)
> 乳化劑——水和油之間的調(diào)和劑
> 不同溫度和壓力對AOT穩(wěn)定CO2乳液的界面張力影響(一)
> 不同表面張力溫度系數(shù)對激光焊接熔池流場的影響
> 誘導(dǎo)期測定法研究NaCl的添加對碳酸鋰固-液界面張力等成核動力學(xué)參數(shù)影響——過飽和度的計算
> 人胰島素的朗繆爾單分子層膜的表面化學(xué)和光譜學(xué)性質(zhì)——結(jié)論、致謝!
推薦新聞Info
-
> 一種可降解、抑制泡沫再生的消泡劑制備方法和應(yīng)用
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(二)
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(一)
> 鈦基量子點納米復(fù)合高性能解水鎖劑制備及表面張力測定
> 如何有效避免釹鐵硼磁體擴散源成分偏析
> 東辛原油酸性活性組分油水界面張力、動態(tài)界面擴張流變性質(zhì)研究(二)
> 東辛原油酸性活性組分油水界面張力、動態(tài)界面擴張流變性質(zhì)研究(一)
> 3種典型清水劑對不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(二)
> 3種典型清水劑對不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(一)
> 5μL樣品測表面張力?超微量天平如何破解納米材料研發(fā)困局
LB膜技術(shù)制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
來源:合肥工業(yè)大學(xué) 瀏覽 820 次 發(fā)布時間:2024-07-22
目前可以用作鋰負(fù)極保護涂層的材料有金屬氧化物、固態(tài)電解質(zhì)、二維材料等。其中二維材料具有原子厚度片狀結(jié)構(gòu),其具有獨特的電子、光學(xué)和機械性能,已經(jīng)成為了技術(shù)應(yīng)用以及未開發(fā)的基礎(chǔ)科學(xué)領(lǐng)域中最有潛力的材料,是鋰負(fù)極涂層的理想材料。其中六方氮化硼(h-BN)具有層狀結(jié)構(gòu),易剝離,是一種新興的涂層;其機械強度(0.7TPa)高、絕緣性好,并具有優(yōu)異的化學(xué)惰性,與一般的無機酸堿溶液、氧化劑均不發(fā)生反應(yīng);h-BN熱穩(wěn)定性極高,在惰性氣體氛圍中能耐2000℃的高溫而不發(fā)生分解,同時也是陶瓷材料中熱導(dǎo)率最高的材料。但是二維材料的單片剝離困難,經(jīng)濟成本較高,且剝離的二維材料納米片易重新聚合,發(fā)生團聚,難以形成單層納米薄膜。
在文獻(xiàn)報道中,研究者通常采用基于真空的濺射技術(shù)如原子層沉積技術(shù)(ALD)、化學(xué)氣相沉積(CVD)、等離子體增強化學(xué)氣相沉積(PECVD)等方法制備二維材料薄膜。2017年Joseph M.Wofford等人在《Scientific Reports》期刊中發(fā)表的A Hybrid MBE-basedGrowth Method forLarge-area Synthesis of Stacked Hexagonal Boron Nitride/Graphene Heterostructures文章中利用高溫等離子體輔助分子束外延技術(shù),實現(xiàn)了高質(zhì)量h-BN薄膜在C處理的Ni(111)襯底上的直接外延生長,其中高溫泄流室(1850℃)用于提供B元素,N元素則通過使用工作在02sccmN流量和350W功率下的射頻等離子電源產(chǎn)生,生長時間約為5h。之后Ni中的C原子在h-BN/Ni界面析出,故形成了h-BN/石墨烯異質(zhì)結(jié)。此外2017年TQ.PVuong等人在《2D Materials》期刊中發(fā)表的Ultraviolet Emission in HexagonalBoronNitride Grown by High-temperature Molecular Beam Epitaxy同樣通過MBE技術(shù),直接在剝離的石墨上合成了單層或多層h-BN薄膜,還觀察到與h-BN晶格和基底排列均勻目周期為15nm的六邊形莫爾條紋。以上為MBE法制備h-BN薄膜奠定了基礎(chǔ),拓寬了h-BN大面積連續(xù)生長的道路。2007年YoichiKubota等人在在《Science》期刊中發(fā)表的DeepUltraviolet Light-emitting Hexagonal BoronNitride Synthesized at AtmosphericPressure文章中報道了一種使用Ni-Mo基溶劑在大氣壓下合成高質(zhì)量h-BN晶體的方法,即先將原始的hBN粉末放入坩堝中,然后將金屬溶劑置于粉末上,之后將它們置于爐中升至高溫(1350-1500℃),保溫12h后降溫,即可以在Ni-Mo金屬和h-BN粉末的接觸面制得h-BN薄片。
現(xiàn)有二維材料制備薄膜實例中大多是基于真空的濺射技術(shù),例如原子層沉積技術(shù)(ALD)、分子層沉積技術(shù)(MLD)、磁控濺射以及真空鍍膜等。雖然基于真空濺射技術(shù)具有自限性、層層沉積增長的特點,可精密控制原子鍍層的厚度。但是這種濺射技術(shù)通常需要大型的專業(yè)設(shè)備、有限體積的真空腔體、昂貴的靶材,且維護成本較高,無法實現(xiàn)大規(guī)模應(yīng)用。
針對以上問題,本發(fā)明使用(Langmuir-Blodgett)LB膜技術(shù)制備一種納米薄膜保護鋰電池極片及鋰離子電池。
為達(dá)到上述目的,本發(fā)明采用如下技術(shù)方案:
一種基于LB膜技術(shù)制備鋰電池極片保護層的方法,其包括以下步驟:
(1)將二維材料納米片分散在分散液中,進行超聲處理;
(2)將超聲處理后的處理液進行離心后,取上清液,烘干得到分層后的二維材料粉末;
(3)在高溫爐中燒結(jié),二維材料表面氧化造孔;
(4)再加入乙醇水溶液中超聲分散形成混合液,將混合液滴在水面上,二維材料分子自組裝在水面上形成二維材料薄膜;
(5)將銅箔置入水中,將二維材料薄膜轉(zhuǎn)移到銅箔上,烘干后放入手套箱中備用;
(6)將銅箔上的二維材料薄膜通過輥壓轉(zhuǎn)移到鋰電池極片上,即在鋰電池極片表面包覆上保護層。
本發(fā)明的關(guān)鍵點在于二維材料納米片經(jīng)處理后在水溶液中進行表面自助裝成膜,本使用LB膜技術(shù)在負(fù)極片表面制備保護層,與現(xiàn)有二維材料制備薄膜實例中大多采用的基于真空的濺射技術(shù)(例如原子層沉積技術(shù)(ALD)、分子層沉積技術(shù)(MLD)、磁控濺射以及真空鍍膜等方法)相比,方法操作簡單,制備環(huán)境要求低。
另外,保護層通過物理轉(zhuǎn)移至鋰電池負(fù)極片上,對鋰電池負(fù)極片進行包覆形成一層薄膜保護層。即在鋰金屬電池中,構(gòu)建一層鋰負(fù)極保護層,來阻擋在沉積/剝離過程中由于鋰離子通量不均勻而引起的枝晶,并將電解液和電極分離開,減少電解液的還原消耗。最終達(dá)到提高電池循環(huán)壽命和安全性的目的。
本發(fā)明使用LB膜技術(shù)制備一種納米薄膜保護層來保護鋰電池極片,常壓下,二維材料納米片在水溶液表面自助裝成致密單層二維材料納米片薄膜,一步成形涂覆金屬鋰負(fù)極,形成薄且熱穩(wěn)定性好的保護層。從而在抑制鋰枝晶生長的同時,還能提高電池內(nèi)部的熱傳導(dǎo),防止局部過熱,從而提高鋰金屬電池的循環(huán)壽命和安全性。