合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 山茶油改性方法、制備原理及在水劑型化妝品中的應(yīng)用(一)
> 液態(tài)合金表面張力快速檢測(cè)及相關(guān)質(zhì)量參數(shù)實(shí)時(shí)評(píng)價(jià)
> 裂縫性水封氣藏解封過(guò)程中潤(rùn)濕反轉(zhuǎn)劑濃度、氣水界面張力變化(三)
> 基于表面張力儀等研究常用農(nóng)藥和表面活性劑在辣椒葉面的潤(rùn)濕能力——材料與方法
> 新型熱塑性材料注塑成型模具,克服熔體在流動(dòng)過(guò)程中的表面張力和氣體阻礙
> SRA減縮劑濃度對(duì)溶液表面張力、砂漿凝結(jié)時(shí)間、水泥水化的影響(三)
> 預(yù)測(cè)納米孔中油氣界面張力的狀態(tài)方程模型構(gòu)建
> 重烷基苯磺酸鹽化學(xué)性質(zhì)、界面性質(zhì)和驅(qū)油機(jī)理研究(二)
> 混合型烷醇酰胺復(fù)雜組成對(duì)油/水界面張力的影響規(guī)律(一)
> 表面活性劑溶液潤(rùn)濕性能影響因素與變化
推薦新聞Info
-
> 一種可降解、抑制泡沫再生的消泡劑制備方法和應(yīng)用
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(二)
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(一)
> 鈦基量子點(diǎn)納米復(fù)合高性能解水鎖劑制備及表面張力測(cè)定
> 如何有效避免釹鐵硼磁體擴(kuò)散源成分偏析
> 東辛原油酸性活性組分油水界面張力、動(dòng)態(tài)界面擴(kuò)張流變性質(zhì)研究(二)
> 東辛原油酸性活性組分油水界面張力、動(dòng)態(tài)界面擴(kuò)張流變性質(zhì)研究(一)
> 3種典型清水劑對(duì)不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(二)
> 3種典型清水劑對(duì)不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(一)
> 5μL樣品測(cè)表面張力?超微量天平如何破解納米材料研發(fā)困局
十二烷基硫酸鈉、水楊酸丁酯流動(dòng)驅(qū)動(dòng)自推進(jìn)界面張力和表面流速測(cè)量
來(lái)源: 竹子學(xué)術(shù) 瀏覽 938 次 發(fā)布時(shí)間:2024-05-29
在自推進(jìn)系統(tǒng)的運(yùn)動(dòng)機(jī)制分析中,經(jīng)??紤]施加到物體上的界面張力的不平衡力。然而,界面張力的不均勻分布也會(huì)引起馬蘭戈尼流動(dòng),這些流動(dòng)也有助于通過(guò)粘性力進(jìn)行自推進(jìn)。這種流動(dòng)的貢獻(xiàn)尚未被直接觀察到,但已在一些系統(tǒng)中測(cè)量了界面張力差異。
本研究利用準(zhǔn)彈性方法同時(shí)測(cè)量了十二烷基硫酸鈉(SDS)水溶液上圓形通道中水楊酸丁酯(BS)液滴單向自推進(jìn)運(yùn)動(dòng)的界面張力和表面流速。激光散射法。還通過(guò)觀察紫外光激發(fā)的熒光來(lái)記錄液滴位置。通過(guò)改變共溶解在SDS水溶液中的初始BS濃度來(lái)測(cè)量界面張力和表面流速對(duì)BS液滴速度的依賴性。
圖1(a)用于研究自驅(qū)動(dòng)液滴和QELS測(cè)量的實(shí)驗(yàn)安排概述。BS代表分束器,其透射率/反射率之比為90:10。(b)60 mM SDS溶液上移動(dòng)的自驅(qū)動(dòng)液滴和測(cè)量點(diǎn)的重疊熒光圖像。
圖2(a,b)液滴速度、平衡界面張力(空氣/液體)和初始BS濃度之間的關(guān)系。(c)結(jié)果(a,b)中液滴速度與平衡界面張力(空氣/液體)之間的關(guān)系。
圖3是選定時(shí)間范圍內(nèi)液滴位置、界面張力和表面流速的時(shí)間分辨測(cè)量的代表性結(jié)果(初始BS濃度:0μM)。
圖4是液滴周圍界面張力(上)和表面流速(下)的代表性空間分布[初始BS濃度:(a,e)0μM,(b,f)20μM,(c,g)30μM,和(d,h)50μM]。
圖5是液滴速度與(a)液滴前后部之間的界面張力差、(b)向前流動(dòng)速度(實(shí)心圓圈)和(c)向后流動(dòng)速度(空心圓圈)的關(guān)系。水平虛線表示零,虛線表示液滴速度與前進(jìn)流速相同時(shí)的情況。
圖6是描述BS液滴自推進(jìn)的簡(jiǎn)化模型。紅色箭頭所示的γf和γb分別代表液滴前部和后部界面張力所產(chǎn)生的力的大小。用藍(lán)色箭頭繪制的τf和τb分別代表來(lái)自向前和向后界面流的粘性力。綠色箭頭表示液滴下方的流動(dòng),vb、vd和vf表示液滴下方每個(gè)x位置處的流速。假設(shè)τb和vb具有負(fù)值,因?yàn)樗鼈兲幱谝旱芜\(yùn)動(dòng)的相反方向。
圖7是計(jì)算出的比例α與液滴速度之間的關(guān)系。
圖8是(a)液滴前面的系統(tǒng)界面張力的最大值(實(shí)心圓)和液滴前面的外推界面張力(空心圓)作為前端流速的函數(shù)。(b)上述最大值和前沿值之間的界面張力差與前沿流速的關(guān)系。(c)前沿流速與前沿界面張力梯度之間的關(guān)系。
結(jié)果,當(dāng)液滴通過(guò)時(shí)間分辨測(cè)量的采樣位置時(shí),觀察到界面張力的周期性減小以及向前和向后流動(dòng)的速度的周期性增加。當(dāng)它們轉(zhuǎn)換為液滴位置的空間分布時(shí),沒(méi)有觀察到液滴前后界面張力差對(duì)液滴速度的依賴性。另一方面,隨著液滴速度的增加,向前和向后流動(dòng)的速度都增加。通過(guò)簡(jiǎn)化模型對(duì)上述結(jié)果的分析,表明液滴前沿界面張力梯度驅(qū)動(dòng)的前向流動(dòng)實(shí)際上在液滴單向自推進(jìn)運(yùn)動(dòng)機(jī)制中發(fā)揮著重要作用。