合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 油藏環(huán)境中離子強(qiáng)度與類型、溫度對烷基苯磺酸鹽溶液油水界面張力的影響
> 如何有效避免釹鐵硼磁體擴(kuò)散源成分偏析
> 基于表面張力系數(shù)等模擬液滴撞擊熱壁面的動力學(xué)行為(一)
> Delta-8使用新方法測試CMC,而不是表面張力測試法——方法
> 不動桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(三)
> 表面張力對乙醇液滴沖擊過冷水平壁面的鋪展動力學(xué)行為的影響(三)
> 基于單分子層技術(shù)研究哈維氏弧菌磷脂酶D對不同磷脂底物的吸附動力學(xué)——材料與方法
> 新制備的雙向拉伸聚丙烯消光膜,具有高挺度、表面張力持久等優(yōu)點
> 界面張力作用下開發(fā)MAPbBr3鈣鈦礦單晶制備方法
> 篩選常用、經(jīng)濟(jì)且可抑制低階煤煤塵的表面活性劑(一)
推薦新聞Info
-
> 鈦基量子點納米復(fù)合高性能解水鎖劑制備及表面張力測定
> 如何有效避免釹鐵硼磁體擴(kuò)散源成分偏析
> 東辛原油酸性活性組分油水界面張力、動態(tài)界面擴(kuò)張流變性質(zhì)研究(二)
> 東辛原油酸性活性組分油水界面張力、動態(tài)界面擴(kuò)張流變性質(zhì)研究(一)
> 3種典型清水劑對不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(二)
> 3種典型清水劑對不同原油組分界面穩(wěn)定性、油滴聚并行為的影響(一)
> 5μL樣品測表面張力?超微量天平如何破解納米材料研發(fā)困局
> 不同OFP含量的FPUA光固化涂層合成及表面性能研究
> 鈦合金Ti6Al4V :SLM成型件冶金缺陷與表面張力有關(guān)嗎
> 界面張力儀測定不同pH值下椰子球蛋白的界面張力變化
釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應(yīng)條件及表面張力測定(三)
來源:北京化工大學(xué)學(xué)報(自然科學(xué)版) 瀏覽 521 次 發(fā)布時間:2025-03-14
2.3反應(yīng)條件優(yōu)化
根據(jù)以上單因素影響的分析結(jié)果,本文采用正交試驗優(yōu)化BEOTSS的合成工藝條件。以反應(yīng)時間(A)、反應(yīng)溫度(B)、n(BEO)∶n(MDHM)(C)、催化劑用量(D)為影響因素,MDHM轉(zhuǎn)化率為評價指標(biāo),采用L9(34)進(jìn)行正交試驗,因素水平見表2,試驗方案及結(jié)果見表3。
表2正交試驗的因素水平
表3正交試驗方案及結(jié)果
根據(jù)極差R的大小,確定各因素對反應(yīng)轉(zhuǎn)化率影響的大小順序為:反應(yīng)溫度B>反應(yīng)時間A>催化劑用量D>原料配比C。通過正交試驗結(jié)果確定釕催化合成工藝的最優(yōu)方案為A 2 B 3 C 2 D 3,即反應(yīng)時間6.0 h、反應(yīng)溫度100℃、n(BEO)∶n(MDHM)為1.05∶1、催化劑用量30 mg/kg。
為驗證工藝的穩(wěn)定性,在以上優(yōu)化條件下進(jìn)行3次重復(fù)實驗,測得MDHM轉(zhuǎn)化率分別為99.00%、99.02%、99.05%,實驗結(jié)果相差不大,表明該合成工藝可行。
2.4 BEOTSS的結(jié)構(gòu)表征結(jié)果
2.4.1紅外光譜
圖6(a)為BEOTSS的紅外譜圖。圖中,3 432 cm-1處的吸收峰為CH2OH中—OH的伸縮振動峰,1 630 cm-1的吸收峰為目標(biāo)產(chǎn)物中C=C的伸縮振動峰;2 960 cm-1和2 875 cm-1處的吸收峰分別為—CH3和—CH2—中C—H鍵的伸縮振動峰;1 260 cm-1、842 cm-1和752 cm-1處的吸收峰為—OSi(CH3)3的特征峰;1 065 cm-1處的吸收峰為聚醚基中C—O—C的伸縮振動峰,它與1 020~1 080 cm-1處特有的Si—O—Si伸縮振動峰部分重疊,引起Si—O—Si峰形發(fā)生不對稱變化;1 353 cm-1和1 406 cm-1處的吸收峰為—CH2—中C—H鍵的變形振動峰。圖6(b)為原料與產(chǎn)物的紅外譜圖比較。圖中,3 432 cm-1處的吸收峰為—OH基團(tuán)的特征峰,原料BEO與產(chǎn)物BEOTSS都有此峰,說明BEO的羥基沒有與Si—H反應(yīng)。MDHM中2 153 cm-1處的吸收峰為Si—H基團(tuán)的特征峰,而BEO與BEOTSS均沒有此峰,說明Si—H加成到BEO的C≡C鍵,形成C=C雙鍵(其特征峰在1 630 cm-1處)。以上結(jié)果表明本研究成功合成了目標(biāo)產(chǎn)物BEOTSS。
圖6 BEOTSS、MDHM和BEO的FT-IR譜圖
2.4.2 1H-NMR譜圖
圖7為BEOTSS的1H-NMR譜圖。根據(jù)譜圖中的化學(xué)位移及積分?jǐn)?shù)據(jù)確定化合物中各基團(tuán)的氫歸屬,得到以下結(jié)果:1H-NMR(400 MHz,CDCl3),δ=6.24~6.16(m,—C=CH—,1H),4.17(m,—CH 2CCHCH 2—,4H),3.72(d,J=5.6 Hz,—CH 2—OH,4H),3.54(t,J=14.6 Hz,—O—CH 2—,4H),0.21(s,—Si(CH 3)3,18H),0.18(s,—SiCH 3,3H)。由于使用氘代氯仿作為溶劑,產(chǎn)物中的2個—OH為活潑氫,在譜圖中沒有出峰,同時結(jié)合紅外譜圖分析,進(jìn)一步證明本研究成功合成了目標(biāo)化合物BEOTSS。
圖7 BEOTSS的1H-NMR譜圖
2.5 BEOTSS的界面性能
表4為25℃下0.1%BEOTSS水溶液的表面張力,由表4可知,BEOTSS的平均表面張力為22.5 mN/m。圖8為BEOTSS的平衡表面張力與濃度對數(shù)的關(guān)系曲線。經(jīng)計算,得到BEOTSS的表面活性參數(shù)如下:c CMC=4.9×10-5 mol/L,γCMC=22.5 mN/m,Γmax=6.0×10-6 mol/m2,α=0.28 nm2,所得α值與文獻(xiàn)[1]報道的三硅氧烷表面活性劑分子的α
(0.31 nm2)接近,說明被吸附的分子形成緊密的單分子層,界面上單個表面活性劑分子所占的平均面積只取決于傘型三硅氧烷的結(jié)構(gòu)和尺寸,屬于多甲基結(jié)構(gòu)在水表面緊密排列[1]。自由能ΔGθ為負(fù)值(-34.5 kJ/mol),表明此表面活性劑在水溶液中形成膠束的過程可自發(fā)進(jìn)行。由以上結(jié)果可以看出,BEOTSS表面活性劑在濃度很低時即可顯著降低水的表面張力,表明此類三硅氧烷化合物是一種非常有效的表面活性劑。
表4 0.1%BEOTSS水溶液的表面張力(25℃)
圖8 BEOTSS的平衡表面張力與濃度對數(shù)的關(guān)系
3結(jié)論
(1)以三氯化釕為催化劑,BEO和MDHM為原料,成功合成了目標(biāo)產(chǎn)物BEOTSS;采用正交試驗優(yōu)化了催化反應(yīng)條件:催化劑用量30 mg/kg,n(BEO)∶n(MDHM)為1.05∶1,反應(yīng)時間6.0 h,反應(yīng)溫度100℃,在此工藝條件下MDHM轉(zhuǎn)化率可達(dá)99%。
(2)25℃下0.1%BEOTSS水溶液的表面張力為22.5 mN/m,臨界膠束濃度為4.9×10-5 mol/L,表明BEOTSS在濃度很低時可顯著降低水的表面張力,具有優(yōu)良的表面活性。